
8 The Delphi Magazine Issue 40

Diagramming In Delphi
by Jim Cooper

Apicture is worth a thousand
words, they say. I tried to think

of a few I could draw, instead of
writing this article, but as you can
see, my artistic abilities weren’t up
to the task. While it may be some
time before I have anything hang-
ing in a major gallery, there is no
doubt that some programs can
benefit greatly from diagrams. This
article is intended to present a set
of classes that provide basic dia-
gramming capabilities, and an
example of their use. For our pur-
poses, a diagram will be defined as
a set of nodes, optionally joined by
some sort of connector. Something
like a network diagram, a class
hierarchy, or a finite state machine
diagram.

There will be two main sections.
Firstly, the description of the dia-
gramming classes. Initially, these
will only provide static diagram-
ming abilities, that is, the elements
of a diagram cannot be moved or
resized by a user, only by code.
Editor willing, the next article will
show how they can be extended to
provide movable, resizable,
streamable diagramming ele-
ments. Secondly, an example pro-
gram. A small application will be
developed to give a visual map of a
website.

Picture This
No, we’re not going through a list of
Blondie songs, à la Julian Bucknall.
I just put it in to panic the Editor.
What we’re really going to do is
describe the base diagramming
class. It’s a descendant of
TGraphicControl. The reasons for

this are several. Primarily, it pro-
vides a TCanvas to draw on, but
doesn’t have a Windows handle
and therefore doesn’t use so many
Windows resources. This is not
such an issue as it once was, but
it’s good practice to minimise
resource use whenever possible.
Even though they cannot receive
the focus, TGraphicControls still
receive mouse messages, which
will be useful even in a ‘static’ dia-
gram. Just you wait and see.
Secondly, several useful proper-
ties and methods are already pro-
vided. Thirdly, the diagramming
objects will automatically be able
to be streamed, simply by making
the relevant properties published.
Lastly, Windows knows when to
draw these controls, so we only
need to override the Paintmethod,
not worry about when to draw the
control.

Creating our own base class is
also a good idea, because the basis
of all the diagramming compo-
nents functionality can be pro-
vided in the one place. For
instance, to make creation of these
diagramming objects easier, the
base class will provide a unique
naming scheme. Similar examples
are scattered throughout the VCL,
where nearly all components are
descended from a TCustomXXXX
class. Although the diagramming
objects we will build are compo-
nents, they are not registered to
appear on the component palette.
It’s not that they can’t be, just that
I don’t see the point. If you want to,
go right ahead. My intention is
that they will normally be used

programmatically, either being
created as required (as in the web
mapper application discussed
later), or by the user in some sort
of diagramming program. In this
latter case, more functionality will
probably be required, especially
moving and resizing diagram ele-
ments, and storing the diagrams.

Note also that we will use the
class naming convention sug-
gested way back when in this mag-
azine. A short prefix between the T
and the descriptive part of the
class name is used to increase the
chances of the name being unique.
I also tend to use the prefix at the
start of the unit names my classes
are in. In this case, we will use jim. I
recommend this practice, as I
know of three TdbTreeView con-
trols, for instance. You can register
these prefixes for free at the Delphi
Prefix Registry, run by Steven
Healey at:

Http://developers.href.com/
registry/dpr.htm

This is an excellent service,
intended to ensure that nobody
uses the same prefixes.

The main inherited properties
that we will be making use of are
Canvas, Owner and Parent. Note that
the Owner of a component is the
form on which it is placed. This is
different from a Parent, which may
be a container control, like a TPanel
or TScrollbox. Setting the Parent is
necessary for the control to
appear on a form.

We will need to override some
virtual methods. The most impor-
tant are Create, which is used to
implement a unique naming
scheme and to allocate any
resources needed, and Destroy,
which releases those resources.
We also need to overide Paint, to
provide the particular drawing ser-
vices required. Another useful
method to override is SetBounds,
which sets all the component’s
boundary properties at one time,

TjimCustomShape = class(TGraphicControl)
// All controls descend from this, to help with streaming and unique naming
protected
procedure SetBounds(ALeft,ATop,AWidth,AHeight : Integer); override;

public
constructor Create(AOwner : TComponent); override;

published
// Make these properties available
property OnClick;
property OnDblClick;

end;

➤ Listing 1



10 The Delphi Magazine Issue 40

ensuring that repainting will not
occur between setting each of
them. This method is also called
when Left, Width, Top and Height
are set, so it is a good place to
enforce any maximum or minimum
sizes, among other things.

Let’s look at the code for the dec-
laration of the base class (shown in
Listing 1).

This is very simple. The con-
structor is overridden so that the
unique naming scheme can be
implemented. Because these are
components, they must be named
uniquely if they are to be placed on
a form (and for streaming). In
essence, all we will do is create a
component name (the word Shape
followed by an integer), check
whether it is already in use and, if it
is, to continue testing names until
we find one that is unused. We will
not rely on the VCL raising an
exception if we use a duplicate
name, because the class of excep-
tion used can actually be raised in

interface
type
TjimTextShape = class(TjimCustomShape)
private
FText     : string;
FAutosize : Boolean;
procedure SetText(Value : string);
procedure SetAutosize(Value : Boolean);

protected
procedure Paint; override;
procedure SetBounds(ALeft, ATop, AWidth, AHeight :
Integer); override;

public
constructor Create(AOwner : TComponent); override;

published
property Text     : string read FText write SetText;
property Autosize : Boolean
read FAutosize write SetAutosize;

end;
implementation
procedure TjimTextShape.Paint;
var TempRect : TRect;

begin {Paint}
inherited Paint;
if not Assigned(Parent) then begin
Exit;

end;
TempRect := ClientRect;  // So can pass as a var parameter
DrawText(Canvas.Handle,PChar(FText),Length(FText),
TempRect, DT_CENTER or DT_NOPREFIX or DT_WORDBREAK);

end;  {Paint}
procedure TjimTextShape.SetBounds(
ALeft,ATop,AWidth,AHeight: Integer);

begin {SetBounds}
// Check that the control bounds are sensible. Note that
// this also works if try to set Left, Top etc properties,
// as their access methods call
// SetBounds().
if FAutosize and Assigned(Parent) then begin
NoLessThan(AWidth,Canvas.TextWidth(FText));
NoLessThan(AHeight,Canvas.TextHeight(FText));

end;
inherited SetBounds(ALeft,ATop,AWidth,AHeight);

end;  {SetBounds}

other circumstances that we might
want to detect. Note that the ability
to stream a diagram object is now
built in because they will all be
descended from TComponent, which
has that functionality. Groovy, this
object orientation. We can store
diagrams in a file with no work.
Actually, there is a small amount to
do, but we’ll get to that next time.
The astute amongst you will have
noticed that SetBounds is overrid-
den as well. Fear not, we’ll come
back to it later. First, let’s start to
make some useful components.

1.001 Pictures
A text caption is a common dia-
gramming element, but then I come
from peasant stock myself. In the
website mapper application, they
will be used to display the various
addresses. Captions will be
instances of the TjimTextShape
class defined in Listing 2.

The interesting features of this
class are the overridden Paint and
SetBounds methods. Their imple-
mentations are shown in Listing 2

as well. As expected, the Paint
method draws the text held in the
Textproperty. It uses the Windows
API routine DrawText because you
could play with the flags that con-
stitute the last parameter if, say,
you wanted to add different text
justifications, or to turn word
wrapping on and off. SetBounds is
used to ensure the control grows
and shrinks with the text, if the
Autosize property is True. The
NoLessThan procedure used in
SetBounds is one of the ancillary
routines used in the file
JimShape.pas, which can be found
on the disk. There are also some
small routines for getting the
height and width of rectangles, and
the minimum and maximum of an
array of integers. Note that both
methods check that the compo-
nent has a Parent (that is, it has
been placed on a form), because
otherwise the Canvas property will
be invalid.

A Plethora Of Pictures
We will definitely want pretty bits
on our diagrams, so we need a
class to display bitmaps.
TjimBitmapShape is defined in
Listing 3.

We will go the same way as many
of the VCL controls, and display an
image held in a TImageList. There
is no particular need for this, of
course, and you can easily modify
the class to use a TPicture instead,
so you could store any bitmap,
metafile or icon. One advantage of
using an ImageList is that the
images will be compiled into the
application. This could also be
done with a Windows resource file,

TjimBitmapShape = class(TjimCustomShape)
private
FImages     : TImageList;
FImageIndex : Integer;
FCaption    : TjimTextShape;
procedure SetImages(Value : TImageList);
procedure SetImageIndex(Value : Integer);
procedure SetCaption(Value : TjimTextShape);

protected
procedure SetBounds(ALeft,ATop,AWidth,AHeight : Integer); override;
procedure Paint; override;
procedure Notification(AComponent : TComponent;Operation : TOperation);
override;

public
constructor Create(AOwner : TComponent); override;

published
property Images     : TImageList read FImages write SetImages;
property ImageIndex : Integer read FImageIndex write SetImageIndex;
property Caption    : TjimTextShape read FCaption write SetCaption;

end;

➤ Listing 3

➤ Listing 2



12 The Delphi Magazine Issue 40

but this way we do less work.
Usually we will be using just a few
images many times. The other is
that it makes painting the control
very easy with the methods of
TImageList. Because there is a ref-
erence to another control, there
must also be a Notification proce-
dure, in case, for example, the
ImageList is deleted.

The access methods are quite
usual, making sure that values for
FImages and FImageIndex are valid.
We can use a few tricks, like setting
FImages only if it is a new value,
when it is used to set the size of the
component to the image size. How-
ever, the main point of interest
here is the overridden Paint
method. Note that unless the com-
ponent has been placed on a form,
we should not attempt any draw-
ing, similarly if the ImageList or
image index are invalid.

A small point which you will
notice if you examine the source on
the disk is that the if statement
that checks this assumes that ‘lazy’
evaluation of Boolean expressions
is enabled, hence the {$B-} at the
top of the file. Lazy evaluation
stops as soon as the result is
known. In this case, as soon as one

of the subexpressions is true. This
saves many nested if statements.
This mode is on by default, but I
prefer to ensure that it stays that
way, so I explicitly turn it on in
those files that rely on it. The last
two lines of the method do the
drawing, using a transparent draw-
ing style. This is my preference,
but isn’t essential. For more tricks
with ImageLists that might be
useful, see David Collie’s article in
Issue 36.

The picture will often need a
caption, so there is a reference to a
TjimTextShape. The SetBounds
method ensures that the caption is
moved whenever the image is
moved or resized. We will use a
simple technique of aligning the
left edge of the caption with the left
edge of the image, and keeping it 5
pixels below. If you want a different
alignment, this is the place to
implement it.

I won’t be describing any other
types of node elements this time,
but hopefully it’s now fairly clear
how to go about it. First, derive a
new type from TjimCustomShape, or
one of its descendants. Second,
override the constructor and
destructor if resources need to be
allocated. Third, override the Paint
method to do the sort of drawing

interface
type
TjimConnectionSide = (csLeft,csRight,csTop,csBottom);
TjimConnection = class(TPersistent)
private
FShape  : TjimCustomShape;
FSide   : TjimConnectionSide;  // Side to connect to
FOffset : Integer; // Distance from top or left of side

public
constructor Create;
procedure Assign(Source : TPersistent); override;
// Gets connection point in parent's coordinates
function ConnPoint(TerminatorRect : TRect): TPoint;
// Gets terminator connection point in parent's
// coordinates
function TermPoint(TerminatorRect : TRect): TPoint;
// Functions to get boundaries of the terminators
function LeftMost(TerminatorRect : TRect): TPoint;
function RightMost(TerminatorRect : TRect): TPoint;
function TopMost(TerminatorRect : TRect): TPoint;
function BottomMost(TerminatorRect : TRect): TPoint;

published
property Shape : TjimCustomShape
read FShape write FShape;
property Side   : TjimConnectionSide
read FSide write FSide;
property Offset : Integer read FOffset write FOffset;

end;
TjimConnector = class(TjimCustomShape)
private
FLineWidth  : Integer;
// The shapes connected by this control
FStartConn : TjimConnection;
FEndConn   : TjimConnection;
// Area of the terminator symbol to be drawn (in
// horizontal position)
FStartTermRect : TRect;
FEndTermRect   : TRect;
procedure SetLineWidth(Value : Integer);
function  GetConn(Index : Integer) : TjimConnection;
procedure SetConn(Index : Integer;

Value : TjimConnection);
function  GetTermRect(Index : Integer) : TRect;
procedure SetTermRect(Index : Integer;Value : TRect);

protected
procedure Paint; override;
procedure Notification(AComponent :
TComponent; Operation : TOperation); override;

// For drawing arrows etc. Called from Paint.
procedure DrawStartTerminator; virtual;
procedure DrawEndTerminator; virtual;
// Restrict the minimum size
procedure SetBounds(ALeft, ATop, AWidth, AHeight :
Integer); override;

// Converts point from parent's coordinates to own
// coordinates
function  Convert(APoint : TPoint) : TPoint;
function  IsConnected(ConnectedShape :
TjimCustomShape) : Boolean;

public
constructor Create(AOwner : TComponent); override;
destructor  Destroy; override;
procedure SetConnections(TheStartConn,TheEndConn :
TjimConnection);
// Called when moving one of the connected shapes
procedure SetBoundingRect;
property StartTermRect : TRect
index 1 read GetTermRect write SetTermRect;

property EndTermRect : TRect
index 2 read GetTermRect write SetTermRect;

published
// Publish these properties so that component streaming
// can be used to store them in a file
property LineWidth : Integer read FLineWidth
write SetLineWidth default 1;

property StartConn : TjimConnection
index 1 read GetConn write SetConn;

property EndConn : TjimConnection
index 2 read GetConn write SetConn;

end;

you require. There are TCanvas
methods to draw various shapes
and colours, for instance. Fourth,
override SetBounds if necessary.
This might be to restrict maximum
or minimum sizes, or to ensure
that associated diagram compo-
nents also get moved or sized.
Lastly, override the Notification
method if you reference any other
controls.

Pointy Bits
We said at the beginning that a dia-
gram consists of nodes and con-
nectors. It now remains to develop
the connector class. Because there
are many different sorts of connec-
tors, there is a need for another
base class. To keep the discussion
simple, we will consider a connec-
tor to be between two nodes only.
So there will be some sort of line
joining the nodes, possibly with
some sort of terminator symbol at
each end, an arrowhead, for
instance.

The point of connection
between a node and a connector is
a little more complicated than it
might appear at first. Obviously, it
will be a point on a
TjimCustomShape. To make dia-
grams look neater, we also want to
be able to specify which side to

➤ Listing 4



December 1998 The Delphi Magazine 13

connect to (top, bottom, left or
right), and how far the connection
point is offset from the top or left.
The definitions of all the required
classes are in Listing 4.

Notice that TjimConnection is
descended from TPersistent. This
is because we want to be able to
stream the published properties,
but we don’t need any of the over-
heads of a component. The two
public functions are used to help
draw the terminator symbol for the
connection, as they return the
points where the connecting line
joins the terminator symbol, and
the terminator symbol joins the
node component, respectively.
TjimConnector uses two of these
connection objects: StartConn and
EndConn. The public properties
StartTermRect and EndTermRect are
used to define the size of the termi-
nator symbols at each end of the
connecting line. The protected vir-
tual methods DrawStartTerminator
and DrawEndTerminator draw the
actual symbols. In this class, they
are empty methods. They could be
abstract methods, but that would
make it impossible to create an
instance of class TjimConnector,
and you may want to just draw a
connecting line, with nothing else
at the ends. Descendant classes
should override one or both of
these methods.

Otherwise, for all the apparent
complexity of the declaration, cre-
ating TjimConnector only follows
the same procedure for deriving a
new diagramming component that
we outlined above. We derive a
new type from TjimCustomShape,
and the constructor and destruc-
tor are overridden to create and
free the TjimConnection objects.
The Paint method is overridden to
do the required drawing. The con-
nector is drawn only if both start
and end shapes have been
assigned, and the line is a straight
line drawn between points calcu-
lated by the TjimConnection.
ConnPoint method. The virtual ter-
minator drawing methods are
called as well. Then we override
SetBounds to ensure that the con-
trol is at least as large as the line
width, and at least as large as the
largest of the terminating shapes.

This avoids any strange errors
when doing the painting. Finally,
we override the Notification
method to check for deletion of
either of the connected shapes.

We follow exactly the same pro-
cedure to create a connector with
an arrowhead at the end of the line.
This time, we inherit from
TjimConnector, so the Paint,
SetBounds and Notification proce-
dures are already sufficient for our
needs. We must override
DrawEndTerminator to draw the
arrowhead, as shown in Listing 5.
Note that the DrawArrowHead
method is made protected, so that
descendant classes can call it. You
could inherit a double headed
arrow class from this one, for
instance. The arrowhead will point
in the required direction, depend-
ing on the values of ConnPt (the

blunt end), and TermPt (the pointy
end). The code for DrawArrowHead is
straightforward but tedious, so we
won’t bother with it here. The
other important point is that
EndTermRect is set in the construc-
tor. This ensures that the connect-
ing line is drawn to the middle of
the blunt end of the arrowhead.
Any classes that are descended
from TjimConnector must set
StartTermRect and EndTermRect in
their constructor, if a start or end
terminator symbol is to going to be
drawn, respectively.

Everywhere That Mary Went
Remember that I said we would
come back to the SetBounds
method of TjimCustomShape? Well,
now’s the time. We have defined
the connectors between node ele-
ments, but what happens when

interface
type
TjimSingleHeadArrow = class(TjimConnector)
protected
procedure DrawArrowHead(ConnPt,TermPt : TPoint);
procedure DrawEndTerminator; override;

public
constructor Create(AOwner : TComponent); override;

end;
implementation
constructor TjimSingleHeadArrow.Create(AOwner : TComponent);
begin {Create}
inherited Create(AOwner);
EndTermRect := Rect(0,0,25,10);

end;  {Create}
...
procedure TjimSingleHeadArrow.DrawEndTerminator;
var
ConnPt,TermPt : TPoint;

begin {DrawEndTerminator}
inherited DrawEndTerminator;
if Assigned(FEndConn.Shape) then begin
ConnPt := Convert(FEndConn.ConnPoint(EndTermRect));
TermPt := Convert(FEndConn.TermPoint(EndTermRect));;
DrawArrowHead(ConnPt,TermPt);

end;
end;  {DrawEndTerminator}

➤ Listing 5

procedure TjimCustomShape.SetBounds(ALeft,ATop,AWidth,AHeight : Integer);
var i : Integer;
begin {SetBounds}
inherited SetBounds(ALeft,ATop,AWidth,AHeight);
// Search for any connectors between this and any other control
// First check that this control has been placed on a form
if not Assigned(Parent) then begin
Exit;

end;
// Search parent control for TjimConnector components
for i := 0 to Parent.ControlCount - 1 do begin
if Parent.Controls[i] is TjimConnector then begin
with TjimConnector(Parent.Controls[i]) do begin
// Check if this component is at either end of the connector
if IsConnected(Self) then begin
// Resize the connector
TjimConnector(Parent.Controls[i]).SetBoundingRect;

end;
end;

end;
end;

end;  {SetBounds}

➤ Listing 6



14 The Delphi Magazine Issue 40

one of those nodes moves? It
would be nice if any connectors
that are attached to it would
automatically redraw themselves.
This is exactly what happens in
Listing 6.

First of all, the inherited
SetBounds method (from TGraphic-
Control) is called to ensure the
component actually gets resized or
moved. Recall that SetBounds is
called whenever Left, Top, Width or
Height is set. If no Parent has been
assigned, then this component has
not yet been used in a diagram. If
there is a Parent, then its Controls
list is searched for TjimConnector
components. Note that the Compo-
nents list is not used, as it contains
those components owned by a con-
trol, which is a bit different.
Normally, all components on a
form are owned by the form,
whereas we just want those com-
ponents that are on our drawing
surface (usually a panel or scroll
box). Anyway, if any Tjim-
Connectors are found, they are
checked to see if they are con-
nected to the current component.
If so, the connector control is
resized and redrawn by calling its
SetBoundsRect method. Because all
node elements will be descended
from TjimCustomShape, and all
connectors will inherit from
TjimConnector, and you will always
call the inherited SetBounds
method when you override it (you
will, won’t you?), you never need to
worry about redrawing connec-
tors. Just move the node elements
and the connectors will follow all
by themselves. Too easy, this
inheritance stuff.

There are a couple of additional
points that should be made clear.
Firstly, any properties that would
need to be stored, if we were pro-
viding such a facility, need to be
made published. Next time, we will
use that to store and retrieve dia-
grams. You should bear that in
mind for any classes you build. Sec-
ondly, we have only included dia-
gramming components that are
basically rectangular. It is possible
to have different shaped windows,
and the techniques in the article by
Steven Colagiovanni in Issue 25
could be adapted for use here.

Here Be Dragons
We are now in a position to draw
diagrams. To demonstrate how, we
are going to develop a simple
application for navigating through
a website visually. Figure 1 shows
it in action, looking at the local web
pages on my machine. What we
have are three categories of web
page. The page second from the
left (http://localhost/JimWeb/
index.htm) is the current page. To
its left is the page that contains the
link we followed to get here, and to
its right are all the links on the
current page. From this view, you
can plainly see that I’m a com-
pletely up-to-date web guru,
because I’m using a style sheet
(JimWebSS.css). If I were artisti-
cally gifted, you would also see
that different icons are used to rep-
resent different URLs, like images,
mailto or FTP addresses. (And yes,
clever you, I have used the internet
to research my holidays in Ireland
and Italy.) Double clicking on a web
page icon will make that the cur-
rent page. The previous page is
included so that it is possible to
navigate back through the site.
Because this is supposed to be a
simple example, no sophisticated
placement algorithm is used. The
parent and current pages always
appear in the middle of the scroll
box, and the child pages are just
added one below the other,
because the scroll box will resize

itself automatically to let them fit.
Obviously, this scheme is too
simplistic for pages with huge
numbers of links, but you can
easily change this to something
more sophisticated if you wish.

The application also needs to
connect to a server to get the
pages. Microsoft’s Personal Web
Server is free, surprisingly small
and easy to set up, and is what I use
for the web pages on my local
machine (it will also work as a web
server on a small network). You
can also use your internet connec-
tion to connect to external sites. In
Issue 27, Dr. Bob did something
similar in his broken links detector.
You may wish to use his tech-
niques for getting web pages,
instead of the TNMHttp component
we will be using. However, the
parsing scheme he used was fairly
simple, and I for one had problems
with pages generated by
FrontPage, which does truly
bizarre things to the HTML format-
ting on occasion.

I had originally intended to
develop an HTML parser in this
article, but in the October issue
Paul Warren showed us how to
extend TParser to parse HTML files
(among other things), and it is pos-
sible to have too much of a good
thing. Therefore, I have put the
parser development part of the
article into an HTML file which is
included on the cover disk, for

➤ Figure 1



16 The Delphi Magazine Issue 40

those who are interested. The
parser I developed is still included
in the source code as well. Strictly
speaking, TParser and its descen-
dants are sophisticated lexical
analysers, and an interesting pro-
ject would be to replace my primi-
tive lexical analyser with Paul’s
much nicer one. However, as my
old maths books used to say, that
is left as an exercise for the reader.

One more thing on this subject
and we will get on to building the
application. The standard text on
writing parsers and compilers is
Compilers. Principles, Techniques
and Tools by Aho, Sethi and
Ullman. The book is so well known
it has a nickname: The Dragon
Book. This is because there is a pic-
ture of a dragon on the cover. Who
says programmers aren’t creative?
If you ever need to write a parser or
compiler, you don’t need to work
out how to do it yourself. The area
is well researched and excellent
techniques are well known. All you
need to do is apply them.

On to the application. For those
not familiar with HTML, a brief
description is that it is plain text,
with a number of tags that control
how the document is displayed. A
tag has the form :

<TAGNAME ATTRIBUTE1=value1
ATTRIBUTE2=value2  ...>

where TAGNAME is one of a defined
set of tags (think of them as display
instructions). The attributes are
like procedure parameters, con-
trolling various options depending
on the tag. There are a lot of tags,
and not all of them are supported
by all browsers, but fortunately we
can ignore nearly all of them. Table
1 shows the tags and associated
attributes we need.

Note that we are ignoring the
APPLET, BLOCKQUOTE, DEL, DIV, EMBED,
HEAD, IFRAME, ILAYER, INPUT, INS,
LAYER, META, OBJECT, Q, SCRIPT, SPAN
and STYLE tags, all of which can
have a URL as one of the attributes.
You may wish to add these.

About Time Too
At long last, we can put everything
together into a little application. It
is based on the Http demo program

that comes with Delphi 3. The list
of parent pages is stored in
FParentUrlList, an instance of a
string list. It is used to navigate
back through the website. Also,
every time the current page
changes, all existing diagram ele-
ments are deleted, except the one
we just double clicked on (because
deleting a component while we are
executing one of its event handlers
will raise an exception when we
exit the handler, not surprisingly).
Lastly, the method ParseDoc does
most of the work.

The source is on the disk, but
basically, what we need to do is
this. We create and free an instance
of my parser each time the proce-
dure is called. We call the Parse
method and, if no exceptions are
raised, the diagram is cleared of all
components (except the one just
double clicked on, if any), and a
new one is drawn. Initially, bitmap
shapes are created for the current
page and, if necessary, the immedi-
ate parent page. If there is a parent
page, it is connected to the current
page by creating one of the single
headed arrow components we
defined earlier. The processes of
creating these components are
encapsulated in CreateBitmapShape
and ConnectShapes, because we will

be performing these actions
repeatedly.

We then step through the
symbol table entries generated by
the parser. If the entry is a title, the
appropriate label caption is
updated with the title of the cur-
rent page. If it is a BASE tag entry,
the value is stored, so that the
complete URL of other elements
can be calculated. If the BASE tag
exists on a page, all URLs are rela-
tive to the value of its HREF attrib-
ute. If the symbol table entry is an
image, the base path is added to
the beginning of the URL, and a
new bitmap shape is created and
connected to the current page.
The difference in creating this new
shape is that a different image is
used to visually denote an image
URL. If the entry is a link, then the
URL is examined to determine its
type, and an image selected from a
highly original collection (I’m
thinking of copyrighting them).
The OnDblClick event has an event
handler assigned if the link is to
another HTML document. This
event handler gets the URL from
the component’s captionproperty,
makes this URL the new current
page, adjusts the parent URL list,
and redraws the diagram. The
parent component has a similar

Tag Attribute

A The HREF attribute specifies the URL of a hypertext link

AREA The HREF attribute specifies the URL of a hypertext link

BASE This HREF attribute will modify any other URL on the page

FRAME The SRC attribute specifies the URL of a hypertext link

IMG The SRC attribute specifies the URL of a hypertext link, usually an
image or video clip

LINK The HREF attribute specifies the URL of another document that
can be used in different ways in the current page. For example, if
the REL attribute is set to STYLESHEET, the linked document is a
style sheet. A style sheet is just a text file with instructions on
how to modify some default characteristics of an HTML page. It
is usually used to give a consistent look to all pages on a website

TITLE
and
/TITLE

If it exists, we will use the document title as the name of the
current page on the diagram. It is simple to parse, as the text
between the start and end tags cannot contain any other HTML

➤ Table 1



December 1998 The Delphi Magazine 17

event handler assigned to it. I also
noticed that URLs that contain
spaces have the characters %20
embedded in them where the
spaces are supposed to go. There
is therefore a routine that replaces
this character string with a space.

Hip And Funky Dude
And that’s it. It is a simple applica-
tion, and HTML is an evolving
‘standard’, so you may find web
pages that will not parse. You
could extend the application by
dealing with other tags, particu-
larly the <Q> tag, which allows
quoted text (a URL as text, not as a
link, for example). You could show
thumbnail sketches for the images,
and add or modify event handlers
so that pages and images could be
edited. You could extend the error
handling in the parser to recover
from an error and keep processing,
or use a more sophisticated posi-
tioning technique for the diagram
elements.

You could also adapt the appli-
cation to show idea maps, instead
of websites. An idea is represented

by some text, a file, an image etc.
An idea map then connects related
ideas. You would need some sort of
data storage, but the presentation
elements all exist.

This leads on to the next article,
when we make the components
movable, sizeable and storeable.
Because I’m a trendy dude who’s
hip to the latest jive, the example
project will be a use case editor.
How’s that for funky?

Jim Cooper works at Sybiz
Software in Newbury, UK. He’s an
Australian, but we won’t hold it
against him, just as long as he
donesn’t mention the cricket (Ok,
Jim?). You can email him at
jim.cooper@virgin.net


	Picture This
	1.001 Pictures
	A Plethora Of Pictures
	Pointy Bits
	Everywhere That Mary Went
	Here Be Dragons
	About Time Too
	Hip And Funky Dude

